13 research outputs found

    Using big data to explore worldwide trends in objective sleep in the transition to adulthood

    Get PDF
    Background: Development induces changes in sleep, and its duration has been reported to change as a function of aging. Additionally, sleep timing is a marker of pubertal maturation, where during adolescence, the circadian rhythm shifts later. Typically, this is manifested in a later sleep onset in the evening and later awakening in the morning. These changes across development seem to be universal around the world but are unlikely to persist into adulthood. Methods: This study utilized accelerometer data from 17,355 participants aged 16-30 years (56% female) measured by validated Polar wearables over a 14-day period. We compared sleep duration, chronotype (sleep midpoint) and weekend catch-up (ie, social jetlag) sleep across ages and regions over 242,948 nights. Results: The data indicate a decline in sleep duration as well as a dramatic shift in sleep onset times throughout adolescence. This continues well into early adulthood and stabilizes nearer age 30. Differences in sleep duration across ages were significant, and ranged from 7:53 h at age 16 to 7:29 h at age 30 in the sample. Additionally, there was a clear difference between females and males throughout adolescence and young adulthood: girls had longer sleep duration and earlier timed sleep in the current study. Differences in sleep were found between regions across the world, and across European areas. Conclusions: Both sleep duration and sleep timing go through a clear developmental pattern, particularly in early adulthood. Females had an earlier sleep midpoint and obtained more sleep. Regional differences in sleep occurred across the world. Crown Copyright (C) 2019 Published by Elsevier B.V. All rights reserved.Peer reviewe

    Heart rate dynamics after combined strength and endurance training in middle-aged women: Heterogeneity of responses.

    Get PDF
    The loss of complexity in physiological systems may be a dynamical biomarker of aging and disease. In this study the effects of combined strength and endurance training compared with those of endurance training or strength training alone on heart rate (HR) complexity and traditional HR variability indices were examined in middle-aged women. 90 previously untrained female volunteers between the age of 40 and 65 years completed a 21 week progressive training period of either strength training, endurance training or their combination, or served as controls. Continuous HR time series were obtained during supine rest and submaximal steady state exercise. The complexity of HR dynamics was assessed using multiscale entropy analysis. In addition, standard time and frequency domain measures were also computed. Endurance training led to increases in HR complexity and selected time and frequency domain measures of HR variability (P<0.01) when measured during exercise. Combined strength and endurance training or strength training alone did not produce significant changes in HR dynamics. Inter-subject heterogeneity of responses was particularly noticeable in the combined training group. At supine rest, no training-induced changes in HR parameters were observed in any of the groups. The present findings emphasize the potential utility of endurance training in increasing the complex variability of HR in middle-aged women. Further studies are needed to explore the combined endurance and strength training adaptations and possible gender and age related factors, as well as other mechanisms, that may mediate the effects of different training regimens on HR dynamics.peerReviewe
    corecore